No Image

Суточная доза радиации для человека

СОДЕРЖАНИЕ
0 просмотров
16 октября 2019

Радиация – фактор воздействия на живые организмы, который никак ими не распознается. Даже у людей отсутствуют своеобразные рецепторы, которые бы ощущали присутствие радиационного фона. Специалисты тщательно изучили влияние излучения на здоровье и жизнь человека. Были созданы и приборы, с помощью которых можно фиксировать показатели. Дозы облучения характеризуют уровень радиации, под влиянием которой человек находился в течение года.

В чем измеряют излучение?

Во Всемирной паутине можно найти немало литературы, посвященной радиоактивному излучению. Практически в каждом источнике встречаются числовые показатели норм облучения и следствия их превышения. Разобраться в непонятных единицах измерения удается не сразу. Изобилие информации, характеризующей предельно допустимые дозы облучения населения, могут легко запутать и знающего человека. Рассмотрим понятия в минимальном и более понятном объеме.

В чем измеряют радиационное излучение? Список величин весьма внушителен: кюри, рад, грэй, беккерель, бэр – это только основные характеристики дозы облучения. Зачем так много? Их применяют для определенных областей медицины и охраны окружающей среды. За единицу воздействия радиации на какое-либо вещество принимают поглощенную дозу – 1 грэй (Гр), равный 1 Дж/кг.

При воздействии излучения на живые организмы говорят об эквивалентной дозе. Она равна поглощенной тканями организма дозе в перерасчете на единицу массы, умноженной на коэффициент повреждения. Константа выделена для каждого органа своя. В результате вычислений получается число с новой единицей измерения – зиверт (Зв).

На основании уже полученных данных о влиянии принятого излучения на ткани определенного органа определяется эффективная эквивалентная доза облучения. Этот показатель вычисляется при помощи умножения предыдущего числа в зивертах на коэффициент, который учитывает разную чувствительность тканей к радиоактивному излучению. Его значение позволяет оценить с учетом биологической реакции организма количество поглощенной энергии.

Что такое допустимые дозы облучения и когда они появились?

Специалисты радиационной безопасности на основе данных о влиянии облучения на здоровье человека разработали предельно допустимые значения энергии, которые могут быть поглощены организмом без вреда. Предельно допустимые дозы (ПДД) указаны для разового или длительного облучения. При этом нормы радиационной безопасности учитывают характеристику лиц, подвергающихся действию радиационного фона.

Выделяют следующие категории:

  • А – лица, работающие с источниками ионизирующего излучения. По ходу выполнения своих трудовых обязанностей подвергаются облучению.
  • Б – население определенной зоны, работники, чьи обязанности не связаны с получением радиации.
  • В – население страны.

Среди персонала различают две группы: работники контролируемой зоны (дозы облучения превышают 0.3 от годового ПДД) и сотрудники вне такой зоны (0.3 от ПДД не превышается). В пределах доз различают 4 типа критических органов, то есть тех, в чьих тканях наблюдается наибольшее количество разрушений в связи с ионизированным излучением. Учитывая перечисленные категории лиц среди населения и работников, а также критические органы, радиационная безопасность устанавливает ПДД.

Впервые пределы облучения появились в 1928 году. Величина годового поглощения радиационного фона составляла 600 миллизиверт (мЗв). Установлена она была для медицинских работников – рентгенологов. С изучением влияния ионизированного излучения на продолжительность и качество жизни ПДД ужесточились. Уже в 1956 году планка снизилась до 50 миллизиверт, а в 1996-м Международная комиссия по защите от радиации уменьшила ее до 20 мЗв. Стоит заметить, что при установлении ПДД в расчет не берут естественное поглощение ионизированной энергии.

Естественная радиация

Если избежать встречи с радиоактивными элементами и их излучением еще хоть как-то можно, то от природного фона никуда не скрыться. Естественное облучение в каждом из регионов имеет индивидуальные показатели. Оно было всегда и с годами никуда не пропадает, а лишь накапливается.

Уровень природной радиации зависит от нескольких факторов:

  • показателя высоты над уровнем моря (чем ниже, тем меньше фон, и наоборот);
  • структуры почвы, воды, горных пород;
  • искусственных причин (производство, АЭС).

Человек получает радиацию через продукты питания, излучение почв, солнца, при медицинском обследовании. Дополнительными источниками облучения становятся производственные предприятия, атомные станции, испытательные полигоны и пусковые аэродромы.

Специалисты считают наиболее приемлемым облучение, которое не превышает 0.2 мкЗв за один час. А верхняя граница нормы радиации определяется в 0.5 мкЗв в час. По прошествии некоторого времени непрерывного воздействия ионизированных веществ допустимые дозы облучения для человека увеличиваются до 10 мкЗв/ч.

По мнению врачей, за всю жизнь человек может получить радиацию в размере не более 100–700 миллизиверт. По факту люди, проживающие в горной местности, подвергаются излучению в несколько больших размерах. Средние показатели поглощения ионизированной энергии в год составляют около 2–3 миллизиверт.

Как именно радиация влияет на клетки?

Ряд химических соединений обладает свойством радиационного излучения. Происходит активное деление ядер атомов, что приводит к высвобождению большого количества энергии. Эта сила способна буквально вырывать электроны от атомов клеток вещества. Сам процесс получил название ионизации. Атом, который подвергся такой процедуре, изменяет свои свойства, что приводит к изменению всего строения вещества. За атомами меняются молекулы, за молекулами общие свойства живой ткани. С возрастанием уровня облучения увеличивается и количество измененных клеток, что приводит к более глобальным переменам. В связи с чем и были высчитаны допустимые дозы облучения для человека. Дело в том, что изменения в живых клетках затрагивают и молекулу ДНК. Иммунная система активно восстанавливает ткани и даже способна «починить» поврежденную ДНК. Но в случаях значительного облучения или нарушения защитных сил организма развиваются заболевания.

С точностью предположить вероятность развития болезней, возникающих на клеточном уровне, при обычном поглощении радиации сложно. Если же эффективная доза облучения (это около 20 мЗв в год для работников промышленности) превышает рекомендуемые показатели в сотни раз, общее состояние здоровья значительно снижается. Иммунная система дает сбои, что влечет за собой развитие различных заболеваний.

Огромные дозы радиации, которые могут быть получены вследствие аварии на АЭС или взрыва атомной бомбы, не всегда совместимы с жизнью. Ткани под воздействием измененных клеток погибают в большом количестве и просто не успевают восстановиться, что влечет за собой нарушение жизненно важных функций. Если часть тканей сохранится, то у человека будет шанс на выздоровление.

Показатели допустимых доз облучения

Согласно нормам радиационной безопасности, установлены предельно допустимые величины ионизирующего облучения в год. Рассмотрим приведенные показатели в таблице.

Допустимые дозы радиационного облучения за один год

К кому применима

Последствия воздействия лучей

Категория А (подвергаются облучению по ходу выполнения норм труда)

Не оказывает неблагоприятного воздействия на организм (современная медицинская аппаратура изменений не обнаруживает)

Население санитарно-защищенных зон и категория Б облучаемых лиц

Категория А, область хрусталика глаза

Категория А, ткань кожи, кистей и стоп

Категория Б и население санитарно-защищенных зон, область хрусталика глаза

Категория Б и население санитарно-защищенных зон, ткань кожи, кистей и стоп

Как видно из таблицы, допустимая доза облучения в год для работников вредных производств и АЭС сильно отличается от показателей, выведенных для населения санитарно-защищенных зон. Все дело в том, что при длительном поглощении допустимого ионизирующего излучения организм справляется со своевременным восстановлением клеток без нарушения здоровья.

Разовые дозы облучения человека

Значительное увеличение радиационного фона приводит к более серьезным повреждениям тканей, в связи с чем начинают неправильно функционировать или вовсе отказывать органы. Критическое состояние возникает лишь при получении огромного количества ионизирующей энергии. Незначительное превышение рекомендуемых доз может привести к заболеваниям, которые могут быть вылечены.

Читайте также:  Льняное масло побочные эффекты и противопоказания

Превышающие норму дозы облучения и последствия

Разовая доза (мЗв)

Что происходит с организмом

Изменений в состоянии здоровья не наблюдаются

Снижается общее количество лимфоцитов (снижается иммунитет)

Значительное снижение лимфоцитов, признаки слабости, тошнота, рвота

В 5% случаев смертельный исход, у большинства наблюдается так называемое лучевое похмелье (признаки схожи с алкогольным похмельем)

Изменения в крови, временная мужская стерилизация, 50% смертности в течение 30 дней после облучения

Смертельная доза облучения, не подлежит лечению

Наступает кома, смерть в течение 5–30 минут

Мгновенная смерть от луча

Разовое получение большого количество радиационного излучения негативно влияет на состояние организма: клетки стремительно разрушаются, не успевая восстановиться. Чем сильнее воздействие, тем больше возникает очагов поражения.

Развитие лучевой болезни: причины

Лучевой болезнью называют общее состояние организма, вызванное влиянием радиоактивного излучения, превышающего ПДД. Поражения наблюдаются со стороны всех систем. Согласно заявлениям Международной комиссии по радиологической защите, дозы облучения, вызывающие лучевую болезнь, начинаются с показателей в 500 мЗв за один раз или более 150 мЗв в год.

Поражающее действие высокой интенсивности (более 500 мЗв разово) возникает вследствие использования атомного оружия, его испытаний, возникновения техногенных катастроф, проведения процедур интенсивного облучения при лечении онкологических, ревматологических заболеваний и болезней крови.

Развитию хронической лучевой болезни подлежат медицинские работники, находящиеся в отделении лучевой терапии и диагностике, а также пациенты, которые часто подвергаются радионуклидным и рентгенологическим исследованиям.

Классификация лучевой болезни, в зависимости от доз радиации

Болезнь характеризуют исходя из того, какую дозу ионизирующего облучения получил больной и как долго это происходило. Однократное воздействие приводит к острому состоянию, а постоянно повторяющееся, но менее массивное – к хроническим процессам.

Рассмотрим основные формы лучевой болезни, в зависимости от полученного разового облучения:

  • лучевая травма (менее 1 Зв) – возникают обратимые изменения;
  • костномозговая форма (от 1 до 6 Зв) – имеет четыре степени, в зависимости от полученной дозы. Смертность при таком диагнозе составляет более 50%. Поражаются клетки красного костного мозга. Состояние может улучшить трансплантация. Период восстановления долгий;
  • желудочно-кишечная (10–20 Зв) характеризуется тяжелым состоянием, сепсисом, кровотечениями ЖКТ;
  • сосудистая (20–80 Зв) – наблюдаются гемодинамические нарушения и тяжелая интоксикация организма;
  • церебральная (80 Зв) – летальный исход в течение 1–3 дней вследствие отека мозга.

Шанс на выздоровление и реабилитацию имеют больные с костномозговой формой (в половине случаев). Более тяжелые состояния не подлежат лечению. Смерть наступает в течение нескольких дней или недель.

Течение острой лучевой болезни

После того как была получена высокая доза излучения, и доза облучения достигла 1–6 Зв, развивается острая лучевая болезнь. Врачи разделяют состояния, которые сменяют друг друга, на 4 этапа:

  1. Первичная реактивность. Наступает в первые часы после облучения. Характеризуется слабостью, понижением артериального давления, тошнотой и рвотой. При облучении свыше 10 Зв переходит сразу в третью фазу.
  2. Латентный период. После 3–4 дней с момента облучения и до месячного срока состояние улучшается.
  3. Развернутая симптоматика. Сопровождается инфекционными, анемическими, кишечными, геморрагическими синдромами. Состояние тяжелое.
  4. Восстановление.

Острое состояние лечится в зависимости от характера клинической картины. В общих случаях назначается дезинтоксикационная терапия путем введения средств, нейтрализующих радиоактивные вещества. При надобности выполняется переливание крови, трансплантация костного мозга.

Пациенты, которым удается пережить первые 12 недель течения острой лучевой болезни, в основном имеют благоприятный прогноз. Но даже при полном восстановлении у таких людей возрастает риск развития онкологических заболеваний, а также рождения потомства с генетическими аномалиями.

Хроническая лучевая болезнь

При постоянном воздействии радиоактивного излучения в меньших дозах, но суммарно превышающих в год 150 мЗв (не считая природного фона), начинается хроническая форма лучевой болезни. Ее развитие проходит три этапа: формирование, восстановление, исход.

Первый этап протекает в течение нескольких лет (до 3). Тяжесть состояния может быть определена от легкой до тяжелой. Если изолировать пациента от места получения радиоактивного излучения, то в течение трех лет наступит фаза восстановления. После чего возможно полное выздоровление или же, наоборот, прогрессирование болезни с быстрым смертельным исходом.

Ионизированное излучение способно в мгновения разрушить клетки организма и вывести его из строя. Именно поэтому соблюдение предельных доз излучения является важным критерием работы на вредном производстве и жизни неподалеку от АЭС и испытательных полигонов.

Норма радиации для человека, или допустимая доза излучения – усредненная величина в мкР/ч, полученная путем клинического изучения пациентов, организм которых подвергся воздействию ионизирующего излучения. В результате проведенных научных исследований было выяснено, что, например, определенная доза радиации может отражать условные нормы или нарушения, степень ионизации, интенсивность и емкость поглощения, эквивалентность, рассчитанную по специальным коэффициентам. Уровень нормальной радиации для человека – всего лишь допустимый предел излучения в мкР/ч, на пороге которого начинаются изменения в организме.

Все ли виды радиации опасны

Для определения ионизирующего излучения применяется несколько специальных терминов, потому что оно может быть разного происхождения. Этим термином обозначают любые потоки, образованные фотонами, элементарными частицами или осколками атомов, которые могут ионизировать вещество. Необходимо отметить следующее:

  1. Ионизация – процесс образования ионов (положительно или отрицательно заряженных) из молекул или атомов. Результатом этого взаимодействия становится поглощение тепла и выброс электронов.
  2. Они ионизируют вещество, в которое попадают. Проникая в клеточные структуры, разрушают и дестабилизируют их. Опасным итогом этого действия становится сбой иммунитета, прекращение привычных химических взаимообменов, обеспечивающих жизнедеятельность клетки и именуемых естественным метаболизмом.
  3. Вызывая выброс свободных электронов, такой распад образует свободные радикалы. Интенсивность реакции и провокация выброса большей или меньшей интенсивности и определяет то, что принято обозначать как уровень радиации.
  4. Не все виды излучения для человека опасны. Некоторые могут становиться таковыми при определенных условиях, но обычно у них недостаточно энергии, чтобы вызвать ионизацию.
  5. Ультрафиолетовые и инфракрасные лучи, видимый свет и радиодиапазоны не могут в нормальном (основном) состоянии вызвать ионизацию.
  6. Исследования показали, что источником излучения радиации могут стать электромагнитное и рентгеновское, потоки частиц различного вида (например, нейтроны, протоны, альфа-частицы или ионы, как результат ядерного деления).

Когда говорят о радиации, имеется в виду именно ионизирующее излучение.

Оно запускает деструкцию белков, становится причиной разрушения клеток живого организма или их перерождения. В природе существуют естественные источники таких потоков, но и человек в немалой степени поучаствовал в возникновении потенциальных резервуаров, откуда могут появляться опасные частицы.

От некоторых из радиоактивных частиц существует простая и доступная защита, (при ее отсутствии и идет речь об облучении). Есть виды, дающие поток активных частиц такой интенсивности, что спастись от них практически невозможно.

Радиация и радиоактивность

Условно можно признать радиацией любые частицы, способные создавать потоки ионов (положительно или отрицательно заряженных). Обычно под этим термином понимают только достаточно большие по силе и энергии, способные действовать на живую клетку.

Они существуют до тех пор, пока не поглощаются каким-либо веществом. Под облучением подразумевают действие радиации или передачу клеткам энергии, которая есть в ионизирующем излучении. Радиоактивность – это потенциал, заложенный в неустойчивых ядрах атомов отдельных веществ.

Читайте также:  Кошка ест мышку

Распад такой неустойчивой структуры приводит к превращениям, в результате которых происходит выброс потока ионизирующего излучения (радиации). Еще в середине прошлого столетия шведский исследователь Зиверт установил, что говорить о радиационном уровне, не причиняющем повреждений, нет никакого смысла. Есть только допустимый уровень и естественный фон, который создается лучами из космоса и условно считается для человека безопасным, нормой.

В понимании ученых, норма облучения – это то, что клетка может выдержать без особых последствий (например, лучевой болезни), но не то, то можно назвать безобидным и абсолютно не оказывающим воздействия. Радиоактивность – потенциальная способность к испусканию ионизирующего излучения под воздействием свободного потока энергии. Радиация и есть эти самые потоки, свободно преодолевающие пространство, пока не поглощаются веществом или предметом.

Виды излучения и проникающая способность

Первой искусственно вызванной реакцией была проведенная с альфа-частицами. Их возникновение происходит при распаде ядер или при ионизации гелия-4. Их проникающая способность не опасна при внешнем (попадающем из космоса) облучении, однако, попадая в дыхательную или пищеварительную систему, эти частицы способны привести к лучевой болезни. Кроме них, есть множество других потенциальных опасностей:

  • бета-частицы – результат распада определенного типа, скорость распространения огромна, есть положительно и отрицательно заряженные, опасно и внешнее, и внутреннее облучение;
  • гамма – обладают огромной проникающей способностью, что приводит к лучевой болезни или онкологии;
  • нейтронное – может спровоцировать серьезные поражения при некоторых условиях.

Облучение на рентгене, о котором постоянно предупреждают при проведении диагностики – это всего лишь искусственно получаемая энергия фотонов. Различают мягкое и жесткое рентгеновское излучение, но любое из них – мутагенный фактор, способный разрушить живые ткани, если не соблюдать норму.

Поэтому оно и признано ионизирующим, и без необходимых мер защиты может привести к лучевой болезни или новообразованиям.

Естественная и искусственная радиация

Естественной считается любая, проникающая в атмосферу из космоса. Ее уровень зависит от географического положения (на полюсах выше из-за магнитного поля Земли, а на экваторе – ниже). Выявляется при обследовании месторождений урановых руд, залежей гранита, железных руд и бокситов. Это потенциальные депо скопления радиации. Данная способность – их естественное свойство.

В городе превышение дозы радиации может наблюдаться как от географического положения и природных залежей поблизости, так и от искусственной – результата деятельности человека. Люди используют радиацию для получения энергии, изменения природных условий или ядерных испытаний, транспортировки опасных отходов, аварий на объектах.

В жилых помещениях фон несколько ниже, но многое зависит от степени радиоактивного заражения, близкого соседства объектов атомной энергии и даже направления распространения потока от места аварии или мирного применения. Испытание оружия может легко сделать смертельно опасным уровень радиации в квартире за короткий промежуток времени (минуту, час).

Допустимые и смертельные дозы радиации

40 лет назад была введена единица радиации, названная по фамилии шведского ученого Зиверт. Один зиверт примерно равен 100 бэрам (биологическому эквиваленту рентгена). Рентген – это частицы в сухом воздухе, а бэр – в биологическом субстрате.

Допустимая норма радиации для человека – 50–60 мкР в ч в России, а в Бразилии верхняя граница – 100 микрорентген в час (мкР/ч). Допустимые нормы различаются в мирное и военное время, для солдат каждой страны ее определяет Министерство обороны. Смертельной дозой считаются разные цифры, все зависит от предельно допустимых нагрузок на отдельного человека. Называются цифры от 0 до 100 рад. Рад используется для измерения поглощенной дозы излучения на 1 г вещества.

Таблица ниже показывает эквиваленты.

Рад Бэр Зиверт
1 рад = 0,01 Гр 1 бэр = 0,01 Зв 0,01 Зв = 100 эрг/г
1 рад = 100 эрг/г 1 бэр = 100 эрг/г 1 Зв = 100 рентген или 100 бэр

Если переводить в рентгены, то 100 мкР равняется 1 мкЗв. Еще совсем недавно облучение и уровень радиации измеряли в микрорентгенах, а теперь – в микрозивертах (мкЗв).

Нормы радиационного фона

Естественным считается значение от 0,1 до 0,16 мкЗв/ч. Относительной нормой считается не более 0,2 мкЗв/час, но многое зависит от продолжительности излучения. Показатель в 1 мЗв/час – это много, но на протяжении года – это норма, не подлежащая превышению. Хотя если эту дозу радиации разделить на количество часов в год, то это 0,57 в микрозивертах. Верхний предел допустимого, норма – это не всегда норма, скорее, уже порог к аномалии.

Опасные дозы облучения

При 1 зиверте человек испытывает негативные симптомы. При трех – уже лысеет и получает различные расстройства, вплоть до полового бессилия. На фоне в 3,5–5 Зв умирает половина больных, причем за короткий срок – 25–30 дней. Более 500 Зв – неминуемая смерть за 2 недели, почти со 100 % вероятностью. Сколько максимально нужно для летального исхода – значение индивидуальное. СанПиН считает нормой 0,25–0,4 мкЗв/час в жилом помещении.

Норма радиации участка под застройку – не более 0,3 мкЗв/час. Иначе в квартирах, построенных на нем, можно будет за несколько месяцев выбрать годовую норму.

Но радиация влияет не только на жилье, она опасна для человека в квартире, на улице, на открытой местности, может присутствовать в продуктах, питьевой воде и так далее.

Симптомы и степени тяжести облучения

Лучевую болезнь дифференцируют на 4 степени тяжести. На первой, легкой, стационар требуется редко: это только начальная, первичная реакция организма, с однократной рвотой и тошнотой. На средней, после первичной реакции, развивается скрытая форма, с общим ухудшением самочувствия, расстройством сердечной деятельности и температурой.

Третья стадия – развитие острой формы, которое гипотетически может перейти в хроническую, но в большинстве случаев закачивается летальным исходом и только иногда – частичным выздоровлением.

До́за излуче́ния — в радиационной безопасности, физике и радиобиологии — величина, используемая для оценки степени воздействия ионизирующего излучения на любые вещества, живые организмы и их ткани.

Содержание

Экспозиционная доза [ править | править код ]

Основная характеристика взаимодействия ионизирующего излучения со средой — это ионизационный эффект. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза — это отношение суммарного электрического заряда ионов одного знака, образованных после полного торможения в воздухе электронов и позитронов, освобождённых или порождённых фотонами в элементарном объёме воздуха, к массе воздуха в этом объёме.

В международной системе единиц (СИ) единицей измерения экспозиционной дозы является кулон, делённый на килограмм (Кл/кг). Внесистемная единица — рентген (Р). 1 Кл/кг = 3876 Р.

Поглощённая доза [ править | править код ]

При расширении круга известных видов ионизирующего излучения и сфер его приложения оказалось, что мера воздействия ионизирующего излучения на вещество не поддаётся простому определению из-за сложности и многообразности протекающих при этом процессов. Важным из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определённому радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощённая доза. Она показывает, какое количество энергии излучения поглощено в единице массы облучаемого вещества и определяется отношением поглощённой энергии ионизирующего излучения к массе поглощающего вещества.

За единицу измерения поглощённой дозы в системе СИ принят грей (Гр). 1 Гр — это такая доза, при которой массе 1 кг передаётся энергия ионизирующего излучения в 1 джоуль. Внесистемной единицей поглощённой дозы является рад. 1 Гр = 100 рад.

Читайте также:  В случае отравления ядовитыми газами необходимо

Эквивалентная доза (биологическая доза) [ править | править код ]

Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощённых дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжёлая частица (например протон) производит на единице длины пути в ткани больше ионов, чем лёгкая (например электрон). При одной и той же поглощённой дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, введено понятие эквивалентной дозы. Эквивалентная доза рассчитывается путём умножения значения поглощённой дозы на специальный коэффициент — взвешивающий коэффициент излучения, учитывающий относительную биологическую эффективность различных видов радиации.

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощённой в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощённая доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (до 1954 года – биологический эквивалент рентгена, после 1954 года – биологический эквивалент рада [1] ). 1 Зв = 100 бэр.

Эффективная доза [ править | править код ]

Эффективная доза (E) — величина, используемая как мера риска возникновения отдалённых последствий облучения всего тела человека и отдельных его органов и тканей с учётом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты.

Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в лёгких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется взвешивающим коэффициентом ткани. Умножив значение эквивалентной дозы на соответствующий взвешивающий коэффициент и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешивающие коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу.

Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.

Ожидаемая эффективная доза E(τ) – доза внутреннего облучения от поступивших в организм человека радионуклидов [2] [3] . Время облучения человека такими радионуклидами определяется периодами их полураспада и биологического удержания в организме и может составлять многие месяцы и даже годы [4] . Для целей регулирования полный период накопления дозы устанавливается равным 50 лет для взрослого человека или, если оценивается доза для детей, до достижения 70 лет. При оценке годовой дозы ожидаемая эффективная доза суммируется с эффективной дозой от внешнего облучения за этот же период [5] .

Эффективная и эквивалентная дозы — это нормируемые величины, то есть, величины, являющиеся мерой ущерба (вреда) от воздействия ионизирующего излучения на человека. К сожалению, они не могут быть непосредственно измерены. Поэтому в практику введены операционные дозиметрические величины, однозначно определяемые через физические характеристики поля излучения в точке, максимально возможно приближенные к нормируемым. Основной операционной величиной является амбиентный эквивалент дозы (синонимы — эквивалент амбиентной дозы, амбиентная доза).

Амбиентный эквивалент дозы Н*(d) — эквивалент дозы, который был создан в шаровом фантоме МКРЕ (международной комиссии по радиационным единицам) на глубине d (мм) от поверхности по диаметру, параллельному направлению излучения, в поле излучения, идентичном рассматриваемому по составу, флюенсу и энергетическому распределению, но мононаправленном и однородном, то есть амбиентный эквивалент дозы Н*(d) — это доза, которую получил бы человек, если бы он находился на месте, где проводится измерение. Единица амбиентного эквивалента дозы — зиверт (Зв).

Групповые дозы [ править | править код ]

Подсчитав индивидуальные эффективные дозы, полученные отдельными людьми, можно прийти к коллективной дозе — сумме индивидуальных эффективных доз в данной группе людей за данный промежуток времени. Коллективную дозу можно подсчитать для населения отдельной деревни, города, административно-территориальной единицы, государства и т. д. Её получают путём умножения средней эффективной дозы на общее количество людей, которые находились под воздействием излучения. Единицей измерения коллективной дозы является человеко-зиверт (чел.-Зв.), внесистемная единица — человеко-бэр (чел.-бэр). Коллективная доза может накапливаться в течение длительного времени, даже не одного поколения, а охватывая последующие поколения.

Кроме того, выделяют следующие дозы:

  • пороговая — доза, ниже которой не отмечены проявления данного эффекта облучения.
  • предотвращаемая — прогнозируемая доза вследствие радиационной аварии, которая может быть предотвращена защитными мероприятиями.
  • удваивающая — доза, которая увеличивает в 2 раза (или на 100%) уровень спонтанных мутаций. Удваивающая доза обратно пропорциональна относительному мутационному риску.
  • минимально летальная — минимальная доза излучения, вызывающая гибель всех облучённых объектов.

Допустимые и смертельные дозы для человека [ править | править код ]

Миллизиверт (мЗв) часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).

Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апреля 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации». Среднемировая доза облучения от рентгенологических исследований, накопленная на душу населения за год, равна 0,4 мЗв, однако в странах с высоким уровнем доступа к медобслуживанию (более одного врача на 1000 человек населения) этот показатель растёт до 1,2 мЗв [6] . Облучение от других техногенных источников значительно меньше: 0,005 мЗв от радионуклидов, оставшихся от атмосферных ядерных испытаний, 0,002 мЗв от Чернобыльской катастрофы, 0,0002 мЗв от ядерной энергетики.

Среднемировая доза облучения от естественных источников, накопленная на душу населения за год, равна 2,4 мЗв, с разбросом от 1 до 10 мЗв [6] . Основные компоненты:

  • 0,4 мЗв от космических лучей (от 0,3 до 1,0 мЗв, в зависимости от высоты над уровнем моря);
  • 0,5 мЗв от внешнего гамма-излучения (от 0,3 до 0,6 мЗв, в зависимости от радионуклидного состава окружения — почвы, стройматериалов и т. п.);
  • 1,2 мЗв внутреннего облучения от ингалируемых атмосферных радионуклидов, главным образом радона (от 0,2 до 10 мЗв, в зависимости от местной концентрации радона в воздухе);
  • 0,3 мЗв внутреннего облучения от инкорпорированных радионуклидов (от 0,2 до 0,8 мЗв, в зависимости от радионуклидного состава пищевых продуктов и воды).

При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть в результате острой лучевой болезни наступает в 50 % случаев [7] :

  • при дозе порядка 3—5 Гр из-за повреждения костного мозга в течение 30—60 суток;
  • 10 ± 5 Гр из-за повреждения желудочно-кишечного тракта и лёгких в течение 10—20 суток;
  • > 15 Гр из-за повреждения нервной системы в течение 1—5 суток.

Мощность дозы [ править | править код ]

Мощность дозы (интенсивность облучения) — приращение соответствующей дозы под воздействием данного излучения за единицу времени. Имеет размерность соответствующей дозы (поглощённой, экспозиционной и т. п.), делённую на единицу времени. Допускается использование различных специальных единиц (например: Зв/час, бэр/мин, мЗв/год и др.).

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Отравления
0 комментариев
No Image Отравления
0 комментариев
No Image Отравления
0 комментариев
No Image Отравления
0 комментариев
Adblock detector