No Image

Что такое метанол и где применяется

СОДЕРЖАНИЕ
0 просмотров
16 октября 2019

В органической химии метанол используется в качестве растворителя.

Метанол используется в газовой промышленности для борьбы с образованием гидратов (из-за низкой температуры замерзания и хорошей растворимости). В органическом синтезе метанол применяют для выпуска формальдегида, формалина, уксусной кислоты и ряда эфиров (например, МТБЭ и ДМЭ), изопрена и др.

Наибольшее его количество идёт на производство формальдегида, который используется для производства карбамидоформальдегидных и фенолформальдегидных смол. Значительные количества CH3OH используют в лакокрасочной промышленности для изготовления растворителей при производстве лаков. Кроме того, его применяют (ограниченно из-за гигроскопичности и отслаивания) как добавку к жидкому топливу для двигателей внутреннего сгорания. Используется в топливных элементах.

Благодаря высокому октановому числу, что позволяет увеличить степень сжатия до 16 и большей на 20 % энергетической мощностью заряда на основе метанола и воздуха, метанол используется для заправки гоночных мотоциклов и автомобилей. Метанол горит в воздушной среде, и при его окислении образуется двуокись углерода и вода:

Для получения биодизеля растительное масло переэтерифицируется метанолом при температуре 60 °C и нормальном давлении приблизительно так: 1 т масла + 200 кг метанола + гидроксид калия или натрия.

Во многих странах метанол применяется в качестве денатурирующей добавки к этанолу при производстве парфюмерии. В России использование метанола в потребительских товарах запрещено.

При добыче газа гидраты могут образовываться в стволах скважин, промысловых коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы (метиловый спирт, гликоли).

Работа топливных элементов основана на реакции окисления метанола на катализаторе в диоксид углерода. Вода выделяется на катоде. Протоны (H + ) проходят через протонообменную мембрану к катоду где они реагируют с кислородом и образуют воду. Электроны проходят через внешнюю цепь от анода к катоду снабжая энергией внешнюю нагрузку.

Получение муравьиной кислоты окислением метанола:

Получение диметилового эфира дегидратацией метанола при 300—400 °C и 2-3 МПа в присутствии гетерогенных катализаторов — алюмосиликатов — степень превращения метанола в диметиловый эфир — 60 % или цеолитов — селективность процесса близка к 100 %. Диметиловый эфир (C2H6O) — экологически чистое топливо без содержания серы, содержание оксидов азота в выхлопных газах на 90 % меньше, чем у бензина. Цетановое число диметилового дизеля более 55, при том что у классического нефтяного 38-53.

Метил-трет-бутиловый эфир получается при взаимодействии метанола с изобутиленом в присутствии кислых катализаторов (например, ионообменных смол).

Метил-трет-бутиловый эфир (C5H12O) применяется в качестве добавки к моторным топливам, повышающей октановое число бензинов (антидетонатор). Максимальное законодательное содержание МТБЭ в бензинах Европейского союза — 15 %, в Польше — 5 %. В России в среднем составе бензинов содержание МТБЭ составляет до 12 % для АИ92 и до 15 % для АИ95, АИ98.

Гомологизация метанола

Гомологизация, то есть превращение органического соединения в свой гомолог путём внедрения одной или нескольких метиленовых групп, для спиртов была впервые осуществлена в 1940 году — на основе метанола каталитическим путём под воздействием высокого давления был синтезирован этанол:

Реакция гомологизации по своему механизму близка реакции гидроформилирования алкенов и в настоящее время с помощью модифицированных катализаторов кобальта и рутения и добавления йодид-ионов в качестве промоторов удаётся добиться 90 % выхода по этанолу.

Исходный метанол также получают из окиси углерода (катализаторы на основе оксидов меди и цинка, давление 5-10 МПа, температура 250 °C), так что общая схема выглядит следующим образом:

Побочными продуктами реакции в случае синтеза этанола будут ацетальдегид, этилен и диэтиловый эфир.

В 1940 году впервые была осуществлена катализируемая оксидом кобальта при давлении 600 атм реакция метанола с синтез-газом с образованием в качестве основного продукта этанола… Впоследствии эта реакция, названная гомологизацией, вызвала огромный интерес у химиков. Ее привлекательность связана с возможностью получения этилена из угольного сырья Применение в качестве катализаторов карбонила кобальта Со2(СО)8 позволило понизить давление до 250 атм, при этом степень превращения метанола составила 70 %, а основной продукт — этанол образовывался с селективностью 40 %. В дальнейшем были предложены более селективные катализаторы на основе соединений кобальта и рутения с добавками фосфиновых лигандов и было установлено, что реакцию можно ускорить с помощью введения промоторов — иодид-ионов. В настоящее время удалось достичь селективности по этанолу 90 %. Хотя механизм гомологизации до конца не установлен, можно считать, что он близок к механизму карбонилирования метанола.

Биометанол

Промышленное культивирование и биотехнологическая конверсия морского фитопланктона рассматривается как одно из наиболее перспективных направлений в области получения биотоплива.

Читайте также:  Лекарства при отравлении пищевом взрослому и поносе

В начале 80-х рядом европейских стран совместно разрабатывался проект, ориентированный на создание промышленных систем с использованием прибрежных пустынных районов. Осуществлению этого проекта помешало общемировое снижение цен на нефть.

Первичное производство биомассы осуществляется путём культивирования фитопланктона в искусственных водоёмах, создаваемых на морском побережье.

Вторичные процессы представляют собой метановое брожение биомассы и последующее гидроксилирование метана с получением метанола.

Основными доводами в пользу использования микроскопических водорослей являются следующие:

  • высокая продуктивность фитопланктона (до 100 т/га в год);
  • в производстве не используются ни плодородные почвы, ни пресная вода;
  • процесс не конкурирует с сельскохозяйственным производством;
  • энергоотдача процесса достигает 14 на стадии получения метана и 7 на стадии получения метанола;

С точки зрения получения энергии данная биосистема имеет существенные экономические преимущества по сравнению с другими способами преобразования солнечной энергии.

В отличие от углеводородов, кислородсодержащие органические вещества имеют комплекс атомов, называемый функциональной группой. Метанол – это предельный спирт, имеющий в составе своей молекулы гидроксильную группу. Она и определяет основные характеристики данного соединения. В нашей статье мы рассмотрим способы получения метилового спирта, важнейшие химические реакции и применение метанола.

Строение молекулы

Для того чтобы выяснить строение метилового спирта, нужно вспомнить, какой вид имеет молекула простейшего предельного углеводорода – метана. Она выражается формулой CH4 и содержит один атом карбона, связанный с помощью простых сигма-связей с атомами водорода.

Если один из них заместить на гидроксильную группу –OH, получим формулу CH3OH. Это метанол. Валентный угол, построенный направлением связи C-O-H, составляет примерно 110⁰, поэтому молекулы одноатомных спиртов имеют угловую форму. Вследствие того, что электроотрицательность кислорода (3,5 эВ) больше, чем карбона (2,5 эВ), связь кислород – углерод очень поляризована, а гидроксогруппа играет роль заместителя, имеющего отрицательный индуктивный эффект. Таким образом, метанол – это спирт, у которого дипольный момент равен 1,69D.

Номенклатура

Рассмотрим три способа образования названия вещества, имеющего формулу CH3OH. Исторически оно образуется от названия углеводородного радикала, к которому присоединилась гидроксильная группа. Радикал CH3 – это метил, поэтому спирт CH3OH именуют метиловым. По Женевской номенклатуре, к названию соответствующего углеводорода – алкана – прибавляют суффикс –ол. Соединение будет называться метанолом. Это название наиболее распространено и используется достаточно часто. В рациональной номенклатуре рассматриваемое нами соединение называется карбинолом.

Физические свойства

Низшие спирты, содержащие до трех атомов карбона, куда входит и метанол, – это жидкости, смешивающиеся с водой в любых пропорциях. Карбинол имеет выраженный алкогольный запах, однако совершенно непригоден для употребления внутрь, так как является сильнейшим нейротоксичным соединением. Плотность его меньше единицы и составляет 0,791 D4 20 . Температуры плавления и кипения равны -97,9 ⁰C и +94,5 ⁰C соответственно.

Получение метанола

Гидролиз соответствующих галогеноалкилов в присутствии гидроксидов активных металлов, например, щелочных или щелочноземельных, и при нагревании – это распространенный метод получения карбинола. В качестве исходных веществ берут хлор- или бромметан, результатом реакции будет замещение атома галогена функциональной группой –OH и получение метанола.

Еще один метод, ведущий к образованию первичных предельных спиртов – это восстановление альдегидов или карбоновых кислот. Для данной окислительно-восстановительной реакции применяют такие сильные восстановители, как натрийборгидрид или литийалюминийгидрид. Исходными соединениями являются муравьиная кислота или формальдегид. Один из современных методов получения карбинола – это его синтез из углерода, воды, водорода и монооксида углерода. Процесс проходит при температуре +250 °C, повышенном давлении и в присутствии окислов цинка и меди в качестве катализаторов. Новым, но экономически оправданным можно назвать метод получения спирта из микроскопических водорослей океанов и морей, биомасса которых действительно огромна. Растительный субстрат подвергают брожению, выделяющийся метан собирают и далее окисляют до метанола. Большими преимуществами производства биометанола считают отсутствие потребности в использовании запасов пресной воды, электроэнергии и чистоту технологии.

Читайте также:  Кока кола от кашля

Металлорганический синтез

Если на органические вещества с карбонильной группой в составе молекул подействовать магнийорганическими соединениями, можно получить одноатомные спирты. Металлоорганические реагенты добывают при взаимодействии магниевых металлических стружек и бромсодержащих производных алканов в среде сухого диэтилового эфира. Из муравьиного альдегида данной реакцией можно получить не только метанол, применение которого ограничено, но и другие первичные предельные спирты.

Химическая характеристика

У карбинола нет ярко выраженных свойств кислот или оснований, к тому же водный раствор вещества не действует на индикаторы. Типичные реакции метанола – это взаимодействие с активными металлами и карбоновыми кислотами. В первом случае образуются алкоголяты металлов, во втором – сложные эфиры. Например, натрий вытесняет атомы водорода в функциональной гидроксильной группе спирта:

Взаимодействие между метиловым спиртом и уксусной кислотой приводит к образованию метилацетата, или метилового эфира уксусной кислоты:

Приведенная выше реакция именуется этерификацией и имеет важное практическое значение.

Окисление спиртов

Реакции метанола, приводящие к получению альдегидов, рассмотрим на примере его взаимодействия с оксидом меди. Если в раствор метанола опустить раскаленную проволоку из меди, покрытую оксидом, то ощущается особый неприятный запах образовавшегося формальдегида. А тусклая поверхность проволоки становится яркой и блестящей вследствие восстановления чистой меди.

Дегидратация

При нагревании и при наличии гигроскопических веществ от молекул спиртов происходит отщепление частиц воды. В продуктах можно обнаружить непредельные углеводороды ряда этилена. В условиях высокой концентрации воды и при пониженной температуре можно получить простые эфиры. Так, из метанола можно добыть диметиловый эфир.

Применение метилового спирта

Метиловый спирт используют в качестве ингибитора гидратов, образующихся в газовых трубопроводах, так как важные свойства метанола – это хорошая растворимость в воде и низкая температура замерзания. Основной объем метилового спирта используется в производстве фенолформальдегидных смол. Высокое октановое число, характерное для карбинола, позволяет применять его в качестве экологически чистого топлива для автомобилей. В лакокрасочной промышленности карбинол используют в качестве растворителя.

Влияние метанола на организм человека

Древесный спирт абсолютно непригоден для использования в качестве алкогольного напитка, так как является сильнейшим токсическим веществом. Попав в желудочно-кишечный тракт, он начинает окисляться до муравьиной кислоты и муравьиного альдегида. Продукты окисления поражают зрительные нервы и сетчатку глаза, содержащую рецепторы. Наступает слепота. Муравьиная кислота, обладающая высокой кумулятивной способностью, разносится кровью к печени и почкам, разрушая эти жизненно важные органы. В результате отравления метанолом имеет место летальный исход, так как способы очистки крови от метаболитов оказываются неэффективными.

В нашей статье мы ознакомились со свойствами, применением и способами получения метанола.

Метанол (метиловый спирт) – простейший элемент органической химии, и одновременно основа для производства многих бытовых и промышленных товаров, сырьевых продуктов. Процесс получения метанола основан на каталитической конверсии углеводородов природного газа с водяным паром.

Именно с метанола начинается весь ряд продуктов органической химии. Он является сырьем при производстве формалина, формальдегида, карбамидоформальдегидного концентрата и смол, полиамида. На основе метанола производятся антидетонационные присадки к бензинам. МТБЭ (метилтретбутиловый эфир) повышает качество и октановое число бензина. Метанол используется в производстве протеина, ядохимикатов и многих других важных продуктов.

Свойства продукта и технические характеристики

Метанол (CH3OH) – бесцветная ядовитая жидкость со слабым запахом этилового спирта. Температура кипения – 64,5°С, плотность 0,7924 г/см3 (20°С). С воздухом образует взрывоопасные смеси при объёмных концентрациях, равных 6,72-36,5%; температура вспышки составляет 8°С; температура самовоспламенения – 436˚C; пределы самовоспламенения – 6,7-34,7 об. долей. Метиловый спирт смешивается во всех соотношениях с водой и большинством органических растворителей, обладает всеми свойствами одноатомных спиртов.

В нижеследующей таблице кратко представлены технические требования к метанолу для марки «А» и «Б» (ГОСТ 2222-95). Приняв тот факт, что на всех производствах указанные технические требования соблюдаются, можно считать приведенные данные основными свойствами этого вещества.

Свойства метанола и технические требования

Наименование показателя

Марка А ОКП 242 1110130 Марка Б ОКП 242 1110140 1. Внешний вид Бесцветная прозрачная жидкость без нерастворимых примесей 2. Плотность при 20°С, г/см 3 0,791-0,792 | 0,791-0,792 3. Смешиваемость с водой Смешивается с водой без следов помутнения и опалесценции 4. Температурные пределы: а) предел кипения, °С 64,0-65,5 64,0-65,5 б) 99% продукта перегоняется в пределах, °С, не более 0,8 1,0 5. Массовая доля воды, %, не более 0,05 0,08 6. Массовая доля свободных кислот в пересчете на муравьиную кислоту %, не более 0,0015 0,0015 7. Массовая доля альдегидов и кетонов в пересчете на ацетон, %, не более 0,003 0,008 8. Массовая доля летучих соединений железа в пересчете на железо, %, не более 0,00001 0,0005 9. Массовая доля аммиака и аминосоединений в пересчете на аммиак, %, не более 0,00001 не нормируют 10. Массовая доля хлора, %, не более 0,0001 0,001 11. Массовая доля серы, %, не более 0,0001 0,001 12. Массовая доля нелетучего остатка после испарения, %, не более 0,001 0,002 13. Удельная электропроводность Ом-1.см-1, не более 3.10-7 не нормируют 14. Массовая доля этилового спирта, %, не более 0,01 не нормируют

Читайте также:  Что такое активированный уголь

Помимо метанола этих марок, существует метанол-сырец, используемый преимущественно в газовой и нефтяной промышленности (см. пункт 1.3). Метанол-сырец, помимо метанола – СН3ОН, содержит воду и диметиловый эфир.

Массовое содержание воды в нем может достигать 11%, соответственно плотность его составляет не более 0,827 г/см3.

Области применения метанола

Метанол-сырец широко используется в газовой промышленности в целях борьбы и предупреждения гидратообразования в газопроводах при добыче и транспортировке природного и попутного газов, для испытания новых скважин и скважин после капитального ремонта и частично для осушки природного газа. В нефтедобывающей промышленности метанол широкого применения не имеет, поскольку добыча нефтяного попутного газа осуществляется в значительно меньших объемах, чем добыча природного газа. Кроме того, попутный нефтяной газ транспортируется на короткие расстояния, подземное хранение не ведется, в данном случае широко используются гликоли.

Получают развитие технологии, позволяющие наряду с метанол-ректификатом выделять диметиловый эфир из метанола-сырца.

В химической промышленности метанол-ректификат выступает в качестве полупродукта для многих промышленных синтезов. Основной расход приходится на производство формалина, уротропина, уксусной кислоты и продуктов метилирования.

В нефтехимической промышленности основное потребление приходится на производство изопрена через формальдегид и изобутилен, а также производство метилтретбутилового эфира (МТБЭ).

Экология

Благодаря Киотскому протоколу, охрана окружающей среды является одним из важнейших аспектов производства метанола, так как оно неизбежно влечет за собой выбросы диоксида углерода.

Помимо диоксида углерода в процессе производства в атмосферу отходят газы, содержащие оксиды азота.

Количество выбросов CO2 зависит от степени использования углерода. При двухступенчатом риформинге эта величина равна 80% и выбросы составляет 0,34 тонны CO2 на тонну метанола. При одноступенчатом – 0,45 тонны CO2 на тонну метанола.

В нижеследующей таблице приведены сравнительные средние показатели выбросов при производстве тонны метанола при разных типах реформинга – одностадийном, двухстадийном и автотермическом.

Сравнительные показатели выбросов метанольных производств

Тип риформинга Одностадийный Двухстадийный Автотермический
Диоксид углерода ( CO2) , т 0,45 0,34 0,45
Оксиды азота (NOX) , грамм 600 150 70
Расход воды, м 3 0,14 0,16 0,12

Источник: данные компании «Haldor Topsoe»

Данные цифры являются средними для всех типов используемой энергии.

Существует ряд разработок, направленных на снижение вредного воздействия производства метанола на окружающую среду. Считается, что обезопасить данные производства можно, разработав метод его синтеза напрямую из метана и кислорода, минуя промежуточный этап производства синтез-газа, поскольку при этом экономилось бы топливо, необходимое для процесса паропреобразования. Однако в настоящее время не известен ни один катализатор, который позволял бы провести эту реакцию при достаточно низкой температуре, чтобы избежать конкурирующей реакции горения; и даже при условии, что такой катализатор будет найден, преимущество по контролю уровня двуокиси углерода будет достигнуто только при использовании кислорода, полученного с помощью ядерной либо восстановимой энергии. В любом случае, в ближайшем будущем ожидать появления новых, более экологически чистых технологий производства метанола ожидать не следует.

C текущей ситуацией и прогнозом развития российского рынка метанола можно познакомиться в отчете Академии Конъюнктуры Промышленных Рынков «Рынок метанола в России».

Об авторе:
Академия Конъюнктуры Промышленных Рынков
оказывает три вида услуг, связанных с анализом рынков, технологий и проектов в промышленных отраслях – проведение маркетинговых исследований, разработка ТЭО и бизнес-планов инвестиционных проектов.
• Маркетинговые исследования
• Технико-экономическое обоснование
• Бизнес-планирование

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Отравления
0 комментариев
No Image Отравления
0 комментариев
No Image Отравления
0 комментариев
No Image Отравления
0 комментариев
Adblock detector